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ABSTRACT 

 

STRUCTURE FROM MOTION USING OPTICAL 

FLOW PROBABILITY DISTRIBUTIONS 

 

Paul C. Merrell 

Department of Electrical and Computer Engineering 

Master of Science 

 

 Several novel structure from motion algorithms are presented that are designed to 

more effectively manage the problem of noise.  In many practical applications, structure 

from motion algorithms fail to work properly because of the noise in the optical flow 

values.  Most structure from motion algorithms implicitly assume that the noise is 

identically distributed and that the noise is white.  Both assumptions are false.  Some 

points can be track more easily than others and some points can be tracked more easily in 

a particular direction.  The accuracy of each optical flow value can be quantified using an 

optical flow probability distribution.  By using optical flow probability distributions in 

place of optical flow estimates in a structure from motion algorithm, a better 

understanding of the noise is developed and a more accurate solution is obtained.   
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 Two different methods of calculating the optical flow probability distributions are 

presented.  The first calculates non-Gaussian probability distributions and the second 

calculates Gaussian probability distributions.  Three different methods for calculating 

structure from motion are presented that use these probability distributions.  The first 

method works on two frames and can handle any kind of noise.  The second method 

works on two frames and is restricted to only Gaussian noise.  The final method works on 

multiple frames and uses Gaussian noise.   

 A simulation was created to directly compare the performance of methods that use 

optical flow probability distributions and methods that do not.  The simulation results 

show that those methods which use the probability distributions better estimate the 

camera motion and the structure of the scene. 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank my adviser, Dr. D. J. Lee for his constant support and 

enthusiasm.  I would also like to thank my family whom I dearly love, for their 

encouragement and support. 

 

 

 

 

 

 



www.manaraa.com



www.manaraa.com

 vii 

 

 

 

Contents 

 

Acknowledgements ……………………………………………………………….     vi 

List of Figures …………………………………………………………………….     ix 

1   Introduction ……………………………………………………………………      1 

       1.1  Literature Review …………………………………………………...........       2 

       1.2  Thesis Outline …………………………………………………………….       5 

2   Optical Flow Probability Distributions ……………………………………...       7 

       2.1  Correlation-Based Approach …………………………………………….        8 

       2.2  Gradient-Based Approach ………………………………………….........       9 

3   Structure from Motion ……………………………………………………....      13 

       3.1  Structure from Motion with Non-Gaussian Noise ………………...…….      14 

       3.2  Two-Frame Gaussian Structure from Motion …………………………..      16 

              3.2.1  Cost Function …………………………………………………….      19 

                  3.2.2  Depth and Rotation Estimation ………………………….............      21 

               3.2.3  Translation Estimation …………………………………………..      23 

       3.3  Multi-Frame Gaussian Structure from Motion ………………………....      26 

               3.3.1  Constant Depth  …………………………………………...      27 

 

              3.3.2  A Better Depth Model …………………………………………...      30 

 

                 3.3.3  Translation, Rotation, and Depth Estimation ……………………      32 



www.manaraa.com

 viii 

                 3.3.4  Smoothness Constraint ……………………………………….....      33 

4   Results ……………………………………………………………………….      35 

5   Conclusion …………………………………………………………………..      45 

              5.1  Future Research ……………………………………………………..       45 

              5.2  Major Contributions ………………………………………………...        46 

              5.3  Summary ……………………………………………………………        47 

Bibliography …………………………………………………………………….       49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 ix

 

 

 

List of Figures 

1. Diagram of the Projection onto a unit sphere ……………………          18  

2. Two-Frame Flowchart …………………………………………...          22 

3. Multiple-Frame Flowchart ……………………………………….          29 

4. Two-Frame Simulation – Translation ……………………………          36 

5. Two-Frame Simulation – Rotation ………………………………           36 

6. Translation errors for different method that do and do not use  

      probability distributions  ...……………………………………….          38 

7. Rotation errors for different method that do and do not use  

      probability distributions  …………………………………………          38 

8. Depth errors for different method that do and do not use  

      probability distributions  ………………………………………..            39 

9. Translation error comparison with Zucchelli’s Method ………..            40 

10. Rotation error comparison with Zucchelli’s Method  ………….             40 

11. One frame from a computer-generated video ………………….             42 

12. True inverse depth ……………………………………………..              42 

13. Recovered inverse depth using the multiple frames with  

      distributions method ……………………………………………             43 

14. Recovered inverse depth using the multiple frames without  

      distributions method …………………………………………...              43 



www.manaraa.com

 x

15. Recovered inverse depth with the camera moving forward …..              43 

16. One frame from a video from a camera approaching a tree …..              43 

17. Recovered inverse depth ………………………………………              43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 1 

 

 

 

Chapter 1 

 

Introduction 

 

 Structure from motion (SFM) is the technique of reconstructing the three-

dimensional structure of a scene from a set of two-dimensional images captured from a 

camera moving within the scene.  SFM is one of the most well-studied and important 

problems in computer vision.  The problem has been studied for over two decades since 

the publication of Lonquet-Higgins’s eight point algorithm [14] in 1981.  It remains an 

important problem because of its numerous applications.  For example, in robotics, a 

working method would allow a robot with only a camera to map out its environment and 

to detect and then avoid any obstacles in its path.  In computer graphics, a working 

algorithm would allow a complete three-dimensional model of a scene to be created by 

simply moving a camera around the scene avoiding the difficult task of modeling it by 

hand. 

 Despite the considerable amount of research that has focused on the SFM 

problem, it remains a difficult and challenging problem.  In a controlled environment, 

many SFM algorithms work well, but in many practical applications, the results are 

unsatisfactory.  This poor performance is largely attributed to the noise that corrupts 
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much of the data in real applications.  This noise is poorly understood and is ineffectively 

handled by existing SFM algorithms. 

 

1.1  Literature Review 

A wide variety of different methods have been proposed for calculating structure 

from motion.  Most methods work by tracking the motion of several feature points in the 

images.  This motion is called the optical flow.  From the optical flow, the motion of the 

camera and the three-dimensional structure of the scene is estimated.  There are a few 

methods that do not use optical flow.  They are called direct methods because they work 

directly from the image data without an intermediate calculation of the optical flow [8, 

19]. 

Some SFM algorithms are designed for only two frames and others use multiple 

frames.  One set of methods could be considered a combination of a two-frame and 

multiple-frame approach.  These methods use two frames to find one intermediate 

solution.  Then two more frames are used to find another intermediate solution and so on.  

Finally, all the intermediate solutions are then fused together or Kalman filtered to 

produce the final solution [3, 20, 24].  The accuracy of these methods largely depends on 

the accuracy of the intermediate solutions. 

Another set of methods is based upon projective geometry [7, 11].  Projective 

geometry is used to calculate SFM without any camera calibration.  However, in most 

applications, something is known about the camera calibration.  The camera calibration 

may be imperfect, but the assumption that nothing is known about the camera calibration 

is unreasonable. 
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Another set of methods is based on the concept of factorization.  Under 

orthographic projection, SFM can be framed as an optimal fixed-rank approximation 

problem, which is solved using a factorization method [27].  Factorization-based methods 

are appealing because they are simple and robust.  However, the original factorization 

method is only valid when orthographic projection is an accurate approximation to true 

perspective projection.  The original method has been extended to use more accurate 

approximations to true perspective projection such as weak perspective or 

paraperspective projections [21]. 

Another approach is to transform the SFM problem into a linear estimation 

problem [13].  Linear estimation is preferred over non-linear estimation because it is 

computationally efficient and more stable and reliable.  Unfortunately, these methods are 

known to be biased.  The translation estimate is biased towards the optical axis of the 

camera [26]. 

One of the most difficult aspects of SFM is the problem of noise.  Noise corrupts 

many of the optical flow estimates and small errors in the optical flow estimates may lead 

to large errors in the estimation of the camera motion.  One possible solution is to use 

some kind of outlier rejection [2, 9, 28] to remove any data that appears to be inaccurate 

because it is inconsistent with the other data.  However, this approach may remove some 

valuable information.  A better approach would be to identify those optical flow values 

that are less accurate and then to rely less heavily on the less accurate values rather than 

discarding them completely.   

The accuracy and reliability of each optical flow value is best assessed from an 

optical flow probability distribution.  There are several ways of calculating optical flow 
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probability distributions, which will be examined in detail later.  SFM should be 

calculated from the optical flow distributions rather than the optical flow estimates, 

because the probability distributions provide more information about the noise. 

Most SFM algorithms simply assume that the noise in the optical flow estimates 

is identically distributed and white.  Other types of noise have been largely overlooked in 

all but a handful of methods that do consider other kinds of noise.  Most of these methods 

are factorization methods [1, 10, 12, 18], which are numerically robust but use an 

imperfect camera model.  Zucchelli et al. [29] also consider non-identically distributed 

and nonwhite Gaussian noise, but instead of using a factorization method, they formulate 

the SFM problem as a nonlinear least squares minimization problem.  The least squares 

problem is solved using a Gauss-Newton iteration.  The Gauss-Newton iteration requires 

an initial estimate of the camera motion and then finds a better solution iteratively.  This 

method is highly sensitive to the location of the initial estimate.  If it is given a poor 

initial estimate, the solution often will converge to a local minimum, not to the global 

minimum. 

 The method presented here most closely resembles the optimal SFM methods of 

Soatto and Brockett [23] and Chiuso et al. [4], which are specifically designed to address 

the issue of noise.  Their method is the optimal solution to the SFM problem when there 

is identically-distributed white Gaussian noise on each of the optical flow values.  Their 

result will be extended by providing the optimal solution in the more general case where 

the noise is not required to be identically distributed and white.   

Dellaert et al. [5] have developed a SFM algorithm where the exact motion of 

each feature point is unknown, but it is known to be one of a few possible values.  
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Similarly, the new approach presented here assumes the exact motion is unknown but 

could be one of a large number or a continuum of possible values.  In addition, the new 

approach has the advantage of knowing the probability of each value.   

 

1.2 Thesis Outline 

Section 2 presents two different methods for calculating the optical flow 

probability distributions.  Section 3 presents several different methods of calculating 

SFM that use the probability distributions.  Some of the methods are designed to use only 

two frames and others are designed for multiple frames.  One of the methods is designed 

to use any kind of probability distributions and the others are designed to only use 

Gaussian probability distributions.  Section 4 presents the results from a number of 

different simulations that test the various methods.  Experiments were conducted that use 

simulated data as well as data taken from computer-generated and real video sequences. 
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Chapter 2 

 

Optical Flow Probability Distributions 

 

 There are several different ways of calculating optical flow probability 

distributions.  One method could be described as a correlation-based method.  In most 

cases, it is more accurate, but takes a longer time to compute.  Another method is taken 

from the work of Simoncelli et al. [22].  It is a gradient-based approach, which makes 

some assumptions about the spatial gradients in the image.  One assumption is that the 

spatial gradients are smooth.  In order for the images to agree with this assumption, it is 

often necessary to blur the images before they are processed.  The correlation-based 

method does not require this.  Both methods assume that the motion of the image is a 

simple planar translation.  This assumption is approximately correct except at depth 

discontinuities.  The gradient-based method may be more accurate when this assumption 

is incorrect.   

The gradient-based method only calculates the mean values and covariance 

matrices of the probability distributions and so it assumes that the noise is Gaussian.  The 

correlation-based method calculates probability distributions that may be non-Gaussian.  

This has both advantages and disadvantages.  The non-Gaussian probability distributions 
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more accurately describe the true noise, but due to the mathematics of the SFM problem 

the non-Gaussian probability distributions are more difficult to manage.  

There is an additional approach that has been suggested, which is to estimate the 

covariance matrix as the inverse of the Hessian matrix [25], but this method will not be 

discussed in any detail. 

 

2.1 Correlation-Based Approach 

The optical flow probability distributions are calculated at a total of n feature 

points.  These feature points are chosen to be those points that have high spatial gradients 

in both the vertical and horizontal directions.  Points with high gradients are the easiest 

points to track.  Let pi be the position of the i-th feature point.  The image intensity at 

position pi and at time t can be modeled as a signal plus white noise: 

  ),(),(),( tNtStI iii ppp +=       (1) 

where I(pi,t) represents the measured image intensity, S(pi,t) represents the signal, and 

N(pi,t) represents the noise.  Over a sufficiently small time step, the change in the signal 

can be expressed as a simple translation: 

  ),(),( dttStS iii +=+ pUp       (2) 

where Ui is the optical flow vector between the two frames.  If the first image is shifted 

by ui and then the next image is subtracted from the shifted image, then 

),(),(

),(),()(),(

dttNtN

dttStSdttItI

iii

iiiiiii

+−++

++−+=++−+

pup

Upuppup
. (3) 

If ui = Ui, then the shifted difference contains only noise: 

  ),(),(),(),( dttNtNdttItI iiiiii +−+=+−+ pUppUp .  (4) 
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The noise must be much smaller than the signal for there to be any chance of recovering 

the true optical flow.  The shifted difference will be small if ui is equal to or close to Ui 

and will be large otherwise.  The probability that a particular optical flow ui is equal to 

the true optical flow value Ui is equivalent to the probability that the magnitude of the 

shifted difference is equal to the magnitude of the noise.  The shifted difference is a 

Gaussian random process.  The probability that ui is equal to Ui based on the image 

intensities is proportional to 

  
2

2

2

)),(),((

22

1
)],(),,(|[ σ

πσ

dttItI

iiiii

iii

edttItIP

+−+
−

∝++=

pup

pupuU , (5) 

for some 2σ , which depends upon the amount of noise in the image.  This probability is 

found using a single point, but more than one point can be used.  Points near the point pi 

are likely to have moved close to the same amount as pi.  Let B(pi) be a set of points near 

pi.  By repeating the same analysis over the set B(pi), and by assuming that the noise is 

independent, the optical flow probability is estimated as 

∏
∈

+−+
−

∝=
)(

2

)),(),((

2

2

2

2

1
]|[

i

i

B

dttItI

ii eIP
pp

pup

uU σ

πσ
.   (6) 

 To calculate a probability distribution, this calculation is repeated over a range of 

possible values of ui.  These probabilities are normalized, so that the probabilities for all 

possible values of ui sum to one. 

 

2.2  Gradient-Based Approach 

 The following method for calculating optical flow distributions will be presented 

without a derivation.  For a complete derivation, see [22].  The first step is to construct 

the following matrix and vectors using functions of the position pi, the spatial gradients 
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  







=

),(),(
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)(

tt

tt

itiy

itix

i pIpI

pIpI
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


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


=
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is pI

pI
pf . 

 Each of these quantities is only calculated from the position pi.  In the calculation, 

it would be best to use all of the points in the set B(pi) that neighbor pi.  The positions 

closer to pi are more likely to have moved in the same direction as pi.  They are more 

valuable and should be given greater weight.  Let ω(p) be the weight attached to the 

position )( iB pp ∈  so that the positions closer to pi are given more weight.  These values 

are then used to calculate the covariance matrix of the optical flow, Ωi, from the equation 

  

1

)(

1

2

2

1 )(

)()(
−

∈

−














Ω+

+
=Ω ∑

iB

p

s

i

pp pf

pMp

σσ

ω
    (8) 

with Ωp being the covariance matrix of the prior distribution of the optical flow and with 

σ1 and σ2 being the variances associated with two different sources of noise.  One source 

of noise is a product of the incorrect assumption that the motion of the image is a simple 

planar translation.  σ1 describes the errors introduced from the failure of this planarity 

assumption.  σ2 describes the errors introduced by an inaccurate temporal derivative, 

possibly from noise in the image intensities.  These parameters may need to be adjusted 

based upon the quality of the images and the characteristics of the scene.  In a typical 
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image sequence, approximate values for each parameter have been found empirically to 

be σ1 = 0.08, σ2 = 1.0, and I⋅=Ω 0.2p .  The mean value of the optical flow ui is given as 

  ∑
∈ +

⋅Ω−=
)( 2

2

1 )(

)()(

iB s

ii

pp pf

pbp
u

σσ

ω
.     (9) 

 Up to this point, the image intensity has been treated as a single value.  This 

would accurately describe a black and white camera, but typical cameras have red, green, 

and blue intensities.  Let M1(pi) be the value of M(pi) for the red image intensity and 

M2(pi) and M3(pi) be the values of M(pi) for the blue and green image intensities, and 

similarly let f1(p), f2(p), and f3(p) be the values of fs(pi) for the red, blue, and green image 

intensities.  Ωi can be recalculated as 

1
3

1 )(

1

2

2

1 )(

)()(
−

= ∈

−














Ω+

+
=Ω ∑ ∑

k B

p

k

k

i

ipp pf

pMp

σσ

ω
.    (10) 

 Likewise, if b1(pi), b2(pi), and b3(pi) are the values of b(pi) for the red, green, and 

blue image intensities then ui can be recalculated as  

  ∑ ∑
= ∈ +

⋅Ω−=
3

1 )( 2

2

1 )(

)()(

k B k

k

ii

ipp pf

pbp
u

σσ

ω
.     (11) 

The mean values ui and the covariance matrix Ωi define a Gaussian probability 

distribution. 
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Chapter 3 

 

Structure from Motion 

 This section presents several different SFM algorithms that use probability 

distributions.  The first is a method that is designed to use any kind of probability 

distributions and is designed for two frames.  The second only uses Gaussian 

distributions and is designed for two frames.  The third uses Gaussian distributions and is 

designed for multiple frames.  By restricting the second and third methods to Gaussian 

distributions, they become simpler computationally.  Allowing non-Gaussian probability 

distributions makes the task much more difficult so that a genetic algorithm is needed to 

solve the problem.  The first method may take a very long time to find an accurate 

solution.  However, given sufficient time, the first method will usually be more accurate 

than the second because the non-Gaussian probability distributions more accurately 

describe the noise. 

All of these methods are nonlinear because they are iterative.  Linear methods do 

have some advantages over nonlinear methods.  The Gaussian methods in Sections 3.2 

and 3.3 can easily be made linear simply by stopping after a single iteration and will 

work better than existing linear SFM algorithms that do not use optical flow probability 

distributions. 
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3.1 Structure from Motion with Non-Gaussian Noise 

After using the correlation-based approach to find the non-Gaussian optical flow 

probability distributions, the goal is to find the probability of a given camera rotation and 

translation.  The camera translation will be represented by the vector a, the camera 

rotation will be represented by the vector b, and the image data will be represented by I.  

The inverse depth, meaning the inverse of the distance from the camera to the objects in 

the scene, will be represented by the vector λ.  The probability of a given translation, 

rotation, and depth value can be found by taking the expected value for all possible 

optical flow values:   

∫∫∫= KKL 321321 )|,,,,,()|,,( uuuIuuubaIba dddPP λλ . (12) 

After applying Bayes’ rule repeatedly and assuming the optical flow values are 

independent of one another,  

( )∫ ∏∫∫
=

=
n

i

ii dPPP
1

321 |),,,|,,()|,,( uIuuuuIbaIba KL λλ . (13) 

The estimate of a, b, and λ is only based upon the optical flow values so 

),,|,,(),,,|,,( 321321 KK uuubauuuIba λλ PP = .  Applying Bayes’ rule several more 

times, 

( )∫ ∏∫∫
=

=
n

i

ii dP
P

PP
P

1321

321 |
),,,(

),,|,,,(),,(
)|,,( uIu

uuu

bauuuba
Iba

K

K
L

λλ
λ . (14) 

Each of the optical flow values is independent of the other values:   

( )
∫ ∏∫∫

=

=
n

i

i

i

i d
P

P
PPP

1

321
)(

|
),,|,,,(),,()|,,( u

u

Iu
bauuubaIba λλλ KL . (15) 

In this two-frame method, the depths of each object is fixed.  The depths of the objects in 

the scene are independent of the camera motion meaning that )(),(),,( λλ PPP baba = .   
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The vector λ contains the depth at each feature point λi.  The depth of each feature point 

is independent of the depth of the other points meaning that ∏
=

=
n

i

iPP
1

)()( λλ .   

        
( )

∫ ∏∫∫
=

=
n

i

i

i

ii d
P

PP
PPP

1

321
)(

|)(
),,|,,,(),()|,,( u

u

Iu
bauuubaIba

λ
λλ KL .(16) 

 The true optical flow vector at the image position [ ]T

iii yx=p  can be written as 

a function of the translation [ ]Tzyx aaa=a , the rotation [ ]Tzyx bbb=b , and the 

inverse depth λi  
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where fo is the focal length of the camera [6].  There is only one possible optical flow 

value for any given camera motion and inverse depth so 
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Equation (16) can therefore be rewritten as 
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The goal is to calculate the most probable translation, rotation, and inverse depth based 

on the image data.  For every possible camera translation and rotation there is a set of 

depth values that are the most probable.  The other less probable depth values can be 
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ignored.  So the most probable rotation and translation values are the values of a and b 

that maximize the probability  

( )
∏

= ≥
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n

i ii

iii
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The depth and the inverse depth must be greater than zero (since it is impossible 

to see objects behind the camera).  The prior distribution of the camera motion P(a,b) is 

based upon any prior knowledge of how the camera moves.  Many things may be known 

about the camera motion that may improve the estimate.  For example, it may be known 

that the camera only travels in the forward or near-forward directions.  This knowledge 

can be incorporated into the prior distribution and will provide a more accurate estimate.   

The prior depth distributions P(λi) are based on any prior knowledge of how far away the 

objects are expected to be from the camera.  P(ui(a, b, λi) | I) is the optical flow 

probability distribution defined in Equation (6).  The prior optical flow distribution 

P(ui(a, b, λi)) can be calculated using the prior distributions of the camera motion and the 

prior distribution of the depth using Equation (17). 

 The most probable translation and rotation vectors are found using a genetic 

algorithm.  This is a very time-consuming process and it is the main disadvantage of this 

method, but this method is accurate when given sufficient time.   

 

3.2  Two-Frame Gaussian Structure from Motion  

If the optical flow probability distributions are Gaussian, a structure from motion 

algorithm can be developed that is much simpler computationally.  In the first image, the 

i-th feature point is located on the image plane at the position pi.  In the second image, 

the i-th feature point has moved to the position ip′ .  The optical flow between the two 
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images is a random variable called Ui, which has a mean value of ui and a covariance 

matrix of Ωi.  The mean values and covariance matrices can be calculated using one of 

the methods described earlier.  The optical flow relates the two positions by the equation 

iii Upp +=′ . 

Each position pi is located on the image plane.  The distance from the optical 

center of the camera to the image plane is equal to the focal length of the camera, fo.  If a 

coordinate system is defined with the origin at the optical center of the camera and the z-

axis pointing in the direction the camera is facing, then each vector pi in this three-

dimensional coordinate system can be written as T

oyxi fpp ][=p .  To make the 

mathematics of the problem simpler, the positions pi and ip′  will be projected onto a unit 

sphere centered at the optical center of the camera.  This projection is shown in Figure 1.  

The projection of the position pi onto a unit sphere will be called xi.  xi and ix′  are 

calculated as 
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           Figure 1: Diagram of the Projection onto a unit sphere 

ix′  can be written as a function of Ui.  An approximate linear relationship between 

Ui and ix′  needs to be found.  Because the random variable Ui is likely to be very close to 

its mean value of ui, )( ii Ux′  can be approximated using a Taylor series as 
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If  the matrix *

iG  is defined as 
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and the vector gi as 
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  ii

ii

ii

i uG
up

up
g

*−
+

+
= ,       (25) 

then  

iiii gUGx +≈′ * .       (26) 

The motion of the feature points on the unit sphere will be represented by the vector 

iii xxf −′= , which is approximated by 

  iiiii xgUGf −+≈ * .       (27) 

A new vector yi is defined as yi = fi × xi.  The “hat” operator will be used to 

indicate the skew-symmetric matrix that performs the cross-product between two vectors, 

so that yxyx ×=ˆ .  If  the matrix Gi is defined as *ˆ
iii GxG −= , then 

 iiiii gxUGy ˆ−≈ .       (28) 

 The translational motion of the camera will be represented by a unit vector a 

pointed in the direction of translation.  The rotation of the camera will be represented by 

a vector b, where the direction of b is the axis about which the camera is rotated and the 

magnitude ||b|| is the amount the camera is rotated in radians.  The inverse depth of the i-

th feature point is λi.  The depth can only be calculated to an unknown scale factor.  The 

scale factor is arbitrarily chosen to be the distance traveled by the camera.  So 1−

iλ  will be 

the distance of the i-th feature point from the camera divided by the distance traveled by 

the camera. 

 

3.2.1  Cost Function 

A slightly different camera model from the camera model used in Equation (17) 

for non-Gaussian noise will be used based on spherical projection.  The following  
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approximate relationship exists between each of the terms that have been defined [23] 

  0ˆˆ 2

i =−+ bxaxy iii λ .       (29) 

After substituting iiii gxUG ˆ−  in for yi, 

0ˆˆˆ 2

i =−+− bxaxgxUG iiiiii λ .     (30) 

Both sides of the equation are multiplied by the left pseudo-inverse of Gi, which is 

( ) T

ii

T

i GGG
1−

 

  0)ˆˆˆ()( 21 =−+−+ −
bxaxgxGGGU iiiii

T

ii

T

ii λ .   (31) 

Equation (31) is only true when there is no noise in the optical flow estimates.  In 

practice, there is always noise in the optical flow estimates.  The value of Ui can be 

calculated for any given a, b, and λi values from equation (31).  This Ui value has a 

known probability based upon the optical flow probability distributions.  From the 

probability distributions a probability can be calculated for every possible combination of 

a, b, and λi values.  The goal is to find the a, b, and λi values that are the most probable.  

Since the noise in Ui is not identically distributed and is not white, the proper measure to 

minimize is the covariance weighted squared-error or the Mahalanobis distance.  The cost  

function r(a,b, λ) is defined as 
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where the weighted-norm 1−Ω
⋅

i

 is given by xxx
12

1

−

Ω
Ω=− i

T

i

.  By minimizing this cost 

function, the a, b, and λi values that are the most probable will be found.  By expanding 

the weighted-norm and rearranging a few terms, it is found that    
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By introducing a new weighting matrix T

ii

T

iii

T

iii GGGGGGW
111

)()(
−−− Ω=

 
Equation 

(33) is rewritten as 
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 The key difference between previous work in SFM and the new method is the 

addition of the weighting matrix Wi.  The weighting matrix gives the more accurate data 

more weight so it is considered to be more valuable.  With the addition of this new 

matrix, the optimal solutions for the translation, rotation, and depth all change to 

incorporate the new weights. 

 

3.2.2  Depth and Rotation Estimation 

 In order to minimize the cost function ),,( λbar  in (34), it will be necessary to use 

generalized least-squares repeatedly.  For any two matrices A and W and any vector x, 

the vector c that minimizes the weighted-norm 
W

Acx −  is found using generalized 

least-squares to be ( ) WxAWAAc TT 1−
= .  From this method, the optimal value for λi for 

any arbitrary value of a and b is found to be 

  
axWxa
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)ˆ(ˆ 2−−
=λ .      (35) 

Since this solution is the best possible solution for any a and b, it can be placed back into 

equation (34), so that the values of a and b that minimize the cost function 
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are the same values of a and b that minimize the cost function r(a, b, λ).   
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Figure 2: Two-Frame Flowchart 

 

Ideally, a solution for a and b would be found simultaneously.  Unfortunately, the 

only closed form solution for a that has been found requires a known estimate of b and 

likewise the closed form solution for b requires a known estimate value for a.  As 

outlined in the flowchart in Figure 2, the plan will be to pick an initial value for a and 

find the optimal value for b based upon that a value.  Next, the optimal value for a based 

upon the calculated b value is found.  Then the optimal value for b based upon the new a 

value is found.  This process repeats itself iteratively until after a few iterations the cost 

function does not change significantly. 
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First, the solution for b based upon a known a will be examined.  The cost 

function in Equation (36) can be simplified by defining a new matrix Qi as 

axWxa

Wxaax
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This equation can be modified in much the same way that Equation (32) was modified to 

produce Equation (34) 
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The solution for b is found using generalized least-squares to be 
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3.2.3  Translation Estimation 

For the moment, let us consider a different way of weighting the norms in the cost 

function.  Let us create a new cost function ∑
=

−+=
n

i
w

iiii
i

r
1

2
2

1
ˆˆ),,( bxaxyba λλ , which 

uses the new weight 
2

ˆ ax iiw = .  This cost function no longer uses the optical flow 

distributions, because the covariance matrices Ωi are no longer used.  This new cost 

function will be used to find a solution that does not use optical flow distributions, but 

then the result will be extended to obtain a method that does use them.  Much of this 

derivation is taken from [23], until the part where it is extended to better handle the noise.  
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The optimal value for λi for arbitrary translation and rotation vectors using the new cost 

function is  

  
axa
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This solution is plugged back into the cost function so that the cost function no longer 

depends on λi: 
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where ⊥x  represents the matrix that projects another vector onto the plane perpendicular 

to x.  The norm of ( )
ii yax
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ˆ  is equal to the norm of i
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xi points out from the center of the unit sphere and yi lies on the surface of the sphere 

tangent to xi, so xi and bxy
2ˆ
ii −  are orthogonal.  This equation can be simplified by 

recognizing that ( ) T

i

T

ii axaxax −=×ˆ  and by removing the weights from the weighted-

norm 
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Since xi is a unit vector and )ˆ(
2
bxya ii

T − is a scalar value, 



www.manaraa.com

 25 

abxybxya

abxya

bxyaba









−−=

−=

−=

∑

∑

∑

=

=

=

n

i

T

iiii

T

n

i

ii

T

n

i

ii

T
r

1

22

1

2
2

1

2
2

1

)ˆ)(ˆ(

)ˆ(

)ˆ(),(

.   (44) 

 The solution for a that minimizes this cost function is the minimum-eigenvalue 

eigenvector of the matrix ( )( )∑
=

−−
n

i

T

iiii

1

22 ˆˆ bxybxy .   

 This result can be extended so that it can handle noise calculated from optical 

flow distributions that are not identically-distributed.  The amount noise in the value 

)ˆˆ()ˆ(
22
bxgxuGabxya iiiii

T

ii

T −−=−  needs to be calculated, so that those values with 

less noise can be given greater weight.  The covariance matrix of ui is equal to Ωi and so 

the covariance matrix of )ˆˆ(
2
bxgxuGa iiiii

T −−  is equal to aGGa
T

iii

T Ω .  By modifying 

the cost function in (44), so that the more accurate values are given greater weight, a new 

cost function is formed as 
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 There is a small dilemma.  The amount of noise depends on the parameter that we 

are trying to estimate a.  The estimation of a depends upon the amount of noise and the 

amount of noise depends upon the estimation of a.  There is a simple solution to this 

dilemma.  An iterative method is already required to calculate a and b.  The solution is to 

simply use the value of a calculated from the previous iteration to estimate the amount of 

noise in the current iteration.  To clarify the notation, ak will be the value of a on the k-th 
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iteration.  The amount of noise on the k-th iteration is equal to T

k

T

iiik 11 −− Ω aGGa .  So 

equation (45) should read 

  
( )∑

=
Ω

−

−−

−=
n

i

ii

T

kk T
k

T
iiik

r
1

2
2

2 1

11

)ˆ(),(
aGGa

bxyaba ,    (46) 

( )∑
=

Ω
−

−−

−=
n

i

kii

T

kk T
k

T
iiik

r
1

2
2

2 1

11

)ˆ(),( abxyaba
aGGa

,   (47) 

T

k

n

i
T

k

T

iiik

T

iiii

kkr a
aGGa

bxybxy
aba 









Ω

−−
= ∑

= −−1 11

22

2

)ˆ)(ˆ(
),( .   (48) 

The solution for ak that minimizes the new cost function ),(2 ba kr  is the minimum-

eigenvalue eigenvector of the matrix 
( )( )
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3.3  Multi-Frame Gaussian Structure from Motion 

 Multi-frame SFM is quite similar to two-frame SFM.  All of the vectors and 

matrices remain essentially the same except they are larger to accommodate multiple 

frames.  Let us assume that there are a total of N+1 frames.  Uit is the optical flow value 

of the i-th feature point at time t.  Ui1 is the optical flow from the first frame to the second 

frame, Ui2 is the optical flow from the second frame to the third frame, and so on.  Ui will 

now represent a vector of size 2N that contains all of the optical flow values Ui1 through 

UiN.  xit is the position of the i-th feature point at time t projected onto a unit sphere 

according to Equation (22). fit is the projection of Uit onto a unit sphere according to 

Equation (27) at time t and yit is defined as yit = fit × xit.  yi is a 3N dimensional vector that 

contains the vectors yi1 through yiN.  Git is the matrix defined according to Equation (28).  

All of the matrices Gi1 through GiN can be combined to form a 3N × 2N block diagonal 
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matrix Gi so that the relationship yi = GiUi + gi holds for some gi.  Nothing substantial 

has changed from the two-frame method except the vectors and matrices are larger. 

 The translational motion of the camera at time t will be represented by the vector 

at and the rotational motion will be represented by bt.  All of the at and bt vectors can be 

combined into the larger vector a and b.  The depth still can only be calculated to an 

unknown scale factor.  The first translation vector a1 will be arbitrarily choosen to be a 

unit vector, so that now ||at|| is equal to the speed of the camera at time t divided by the 

speed of the camera at the first frame and 1−

iλ  is equal to the distance from the camera to 

the i-th feature point divided by distance traveled by the camera from between the first 

and the second frames. 

 

3.3.1  Constant Depth 

 The depth of each feature point is not constant over time, but often the depth only 

changes slightly.  The depth will change slightly as the camera approaches or recedes 

from the objects in the scene.  However, if most of the objects are not too close to the 

camera, it can be assumed that the depth is constant over time without significantly 

affecting the performance of the algorithm.  First, an algorithm that assumes the depth is 

constant will be presented, and then a more difficult method that does not assume 

constant depth will be considered. 

 The relationship between the optical flow values and the camera motion is the 

same for multiple frames as it is for two frames.  By adding time indices to Equation 

(29), it can be rewritten as 

  0ˆˆ 2

it =−+ titittit bxaxy λ .      (49) 
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If ix̂  is a 3N × 3N block diagonal matrix whose blocks are the matrices 1
ˆ

ix  through iNx̂  

then  

0ˆˆ 2

i =−+ bxaxy iii λ ,       (50) 

which is exactly the same as Equation (29) except each of the vectors and matrices are 

larger than they were in Equation (29).  Since this equation is the identical, the solution 

for the rotation for a given translation can be derived in the same way it was in Equations 

(29) through (39) as 
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The depth estimation is also identical:  

  
axWxa

bxyWxa

iii

T

iiii

T

i
ˆˆ

)ˆ(ˆ 2−−
=λ .      (52) 

Like the two-frame SFM method, the rotation and depth are estimated from a 

known translation.  However, instead of estimation the translation from a known rotation, 

the translation will be estimated from known depth values.  The reason for this change 

between two frames and multiple frames is that in the two-frame case the depth values 

are highly unreliable.  Each depth value is only calculated from a single optical flow 

value.  If that one optical flow value is inaccurate, the depth value will also be inaccurate.  

What makes multi-frame SFM so appealing is that all of the optical flow values from 

many frames can be used to produce a fairly accurate depth value.   

As outlined in Figure 3, the multi-frame SFM algorithm works by first finding an 

initial estimate of the translation according to Equation (48).  This initial translation 
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Figure 3: Multi-Frame Flowchart 

 

estimate is used to calculate the optimal rotation and depth of each feature point from 

Equations (51) and (52).  The depth then is used to calculate the optimal translation and 

rotation.  Then the translation is used to calculate the optimal rotation and depth.  This 

process repeats until a fairly good estimate of the translation, rotation, and depth is 

obtained. 

Notice that the rotation is recalculated in each step.  There is a good reason for 

this.  An alternative worth considering is to calculate the depth from a known rotation and 

translation.  However, this is the wrong approach.  The best approach would be to solve 

all three parameters simultaneously and use no known values.  The next best alternative 

is to use one known parameter to solve for the other two parameters.  The worst approach 

would be to use two parameters to solve for the remaining parameter. 

The only remaining step is to find the optimal value for translation and rotation 

from known depth values.  The vector d and the matrix Pi are defined as 
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so that the weighted-norm in (34) can be written as ∑
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dPy and the solution for 

the combined translation and rotation vector d is found to be 
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3.3.2  A Better Depth Model 

 In reality, the inverse depths of the feature points λi are not constant over time.  

The depths will change as the camera approaches or recedes from the objects in the 

scene.  The depth of the i-th feature point at time t will be called λit.  A coordinate system 

can be defined around the initial position and orientation of the camera.  The origin of 

this coordinate system is located at the position of the camera on the first frame, the z-

axis is the direction the camera is facing at the first frame, and the x-axis as the horizontal 

direction of the camera in the first frame.  In this three-dimensional coordinate system, 

the i-th feature point is located at the position 1

11

−

ii λx .  At time t, the camera will be 

located at the position ∑
=

=
t

t

1τ
τav .  (This equation is not entirely correct because it 

ignores the rotation of the camera.  Each of the translation vectors should be rotated about 

each of the rotation vectors from the frames that precede it.)  The distance from the 

camera to the i-th feature point at time t is equal to tii vx −−1

11λ  and so λit can be written 

as a function of the inverse depth at the first frame λi1 
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Since the depth at any future time can be calculated from the depth on the first frame then 

it is only necessary to solve for the depth at the first frame.  The other depth values will 

immediately follow.  Unfortunately the relationship between λi1 and λit is nonlinear.  To 

avoid nonlinear estimation, a Taylor series approximation is used.  Let λo be a value near 

the correct value of λi1.  In practice, λo will simply be the value of λi1 taken from the 

previous iteration.  Using a Taylor series and neglecting the higher order terms λit is 

approximated as 
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If the vectors mi, λi, and qi are defined as 
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then the vector λi that contains the inverse depth at each time step is approximately equal 

to 

iiii qm +≈ 1λλ .       (58) 

 

3.3.3  Translation, Rotation, and Depth Estimation 

 Let a′ be a 3N × N block diagonal comprised of the vectors a1 through aN.  Since 

λi is no longer a scalar quantity, Equation (50) is rewritten as 

0ˆˆ 2

i =−′+ bxaxy iii λ .       (59) 

Substituting in the new value for λi, 

  0ˆ)(ˆ 2

1i =−+′+ bxqmaxy iiiii λ . 

 The solution for the depth is found using generalized least squares to be 
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Plugging this solution back in the cost function and solving for the rotation using 

generalized least squares, it is found that 
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where Qi is redefined as 
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The only missing piece is a method of finding the optimal value for translation 

and rotation from known depth values.  The matrix iλ ′  and the matrix Pi are defined as 
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Similar to equation (54), the solution for the combined translation and rotation vector d is 

found to be  
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3.3.4 Smoothness Constraint 

 A better estimate can be obtained with prior knowledge of how the camera 

typically moves or of what is expected to be in the scene that the camera will be 

observing.  For example, it may be known that because the camera is attached to an 

airplane and the camera can only travel in the forward or near-forward directions.  In 

other applications, the camera may not be able to rotate very quickly and the rotation will 

be small.  All of this knowledge can be used to improve the estimate.  In a typical 

application, it can be assumed that the camera will not change directions quickly relative 

to frame rate.  It can be assumed that both the rotation and translation of the camera in 

one frame will be close to their new values in the next frame.  By introducing two new 

terms into the cost function in (34), a requirement is added that the motion of the camera 

be somewhat smooth over many frames.  The new cost function is given by 
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where sa and sb are two constants that can be adjusted based upon how smooth the camera 

translation and rotation is expected to be.  A new 3(N-1) × 3N matrix H and a new 6(N-1) 

× 3N matrix H′  are formed using the equations 
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 The solution for the optimal translation and rotation from equation (63) is 

modified to be 
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and the solution for the rotation from a known depth is modified in a similar fashion 
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Chapter 4 

 

Results 

 

Two simulations were created to compare the new methods to other similar 

methods.  The two simulations are identical except one uses two frames and the other 

uses five frames.  On each trial, fifty feature points are selected at random locations.  

Random translation and rotation vectors are chosen and then used to calculate the optical 

flow values at each feature point.  The optical flow values are calculated exactly and then 

these optical flow values are corrupted by noise at each time step.  The variance of the 

optical flow noise in the x and y directions is randomly assigned a value between 0.25 

and 1.75 times a mean noise value.  The correlation coefficient is randomly chosen to be 

between -1 and 1.  The corrupted optical flow values are then used in several different 

methods for comparison.  Some aspects of this simulation are known to be unrealistic.  

The simulation assumes that the exact covariance matrix of the noise is known.  In 

practice, this must be estimated using Equation (10). 

The results from the two-frame simulation are shown in Figures 4 and 5.  In this 

simulation, the new method that uses probability distributions is compared with another 

method that does not [23].  The noise level along the x-axis is equal to the average 

variance of the noise and is measured in focal lengths.  The translation error is measured 
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as the size of the angle between the estimated translation vector and the true translation 

vector.  The rotation error is measured as the norm of the difference between the 

estimated rotation vector and the true rotation vector.  The result for both the rotation and 

translation estimation show the new method gives better results across all noise levels. 

 

Figure 4:  Two-Frame Simulation – Translation 

 

Figure 5:  Two-Frame Simulation – Rotation 
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Figures 6, 7, and 8 show the median translation, rotation, and depth error after 400 

trials for four different multiple-frame methods.  The translation error is equal to the 

norm of the difference between the estimated translation vector and the true translation 

and is measured in terms of the distance the camera travel between the first and second 

frames.  The rotation error is equal to the norm of the difference between the estimated 

rotation vector and the true rotation vector.  The inverse depth error is equal to the 

average error in the inverse depth calculation for all fifty points.  The inverse depth is 

measured in terms of the inverse distance the camera traveled between the first and 

second frames.   

Two of the four tested methods assume constant depth and two do not.  Two of 

the four methods use the optical flow probability distributions, and two methods do not 

use the probability distributions and replace the matrix Wi with the identity matrix.  A 

fifth method, which is a two-frame method, is included in the depth error results of 

Figure 8.  This uses the two-frame method of Soatto and Brockett [23].  This method has 

similarities with the other four methods that were tested.  However, the two-frame 

method was never designed to work on multiple frames.  The reason it is included is to 

show how much better results can be found using multiple frames instead of just two 

frames.  The results in Figures 6, 7, and 8 show that the methods that use probability 

distributions perform better.  The results also show that the methods which do not assume 

a constant depth perform much better at low noise levels.  However, at high noise levels, 

the dynamic depth methods become unstable and perform more poorly than the methods 

that assume constant depth.  The results are plotted on a log-log scale.  So the differences 

between the methods may appear to be smaller than they truly are.   
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Figure 6: Translation errors for different methods  

that do and do not use probability distributions. 

 

 

Figure 7: Rotation errors for different methods  

that do and do not use probability distributions. 
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Figure 8: Depth errors for different methods  

that do and do not use probability distributions. 

 

 To better test the methods presented here, a comparison is needed with another 

method that uses multiple frames and that uses probability distributions.  There are only a 

handful of methods that fit this criterion.  Zucchelli et al. [29] present a method that fits 

this criterion and which is similar because it formulates the problem as a least squares 

optimization problem.  In some ways, it is difficult to compare these different methods.  

All of the methods require an initial translation estimate, but the Zucchelli method is 

particularly sensitive to the starting location.  In fact, the authors suggest running the 

same algorithm fifteen to twenty times with different initial values each time.  The 

algorithms presented in Section 3 need only one initial value and to run only once.  As a 

compromise, the simulation uses only one initial value, but it is given an initial value 

close to the true value so that the Zucchelli method will work relatively better. 
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Figure 9: Translation error comparison with Zucchelli’s Method. 

 

 

Figure 10: Rotation error comparison with Zucchelli’s Method. 
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The results in Figures 9 and 10 show that the new method perform better except at 

very high noise levels.  There are several reasons why the new methods work better.  The 

Zucchelli method uses a camera model that is less accurate than the one in Equation (29).  

One of the reasons spherical projection is used is to be able to find a more accurate 

camera model.  The Zucchelli method uses a Gauss-Newton iteration.  Like our method, 

it requires an initial translation value.  However, it is very sensitive to the location of the 

initial translation value.  If there is a poor initial value, the solution will often converge to 

a local minimum instead of the global minimum.  The Zucchelli method assumes the 

depth is constant, which partially explains why it does not perform as well when there is 

little noise. 

 The calculation of optical flow is difficult and sometimes unreliable.  Both the 

high noise levels and the low noise levels in the simulation are realistic values under 

different circumstances.  However, once a certain noise level is reached nearly all 

methods perform unsatisfactory.  The fact that one method performs better than another 

method at a high noise level is not as important as the fact that both methods perform so 

poorly that their estimate has little value. 

The methods were tested on two different scenes: a computer generated scene and 

a scene from a real image sequence taken from a camera onboard a UAV headed towards 

a tree.  Figure 11 shows one frame from the computer generated sequence.  Computer 

generated images are useful because the true depths of the objects in the image are known 

precisely.  Figure 12 shows the true inverse depth, λi, at each point on the image.  The 

darker areas indicate an object that is further away from the camera and lighter areas 

indicate an object that is closer.  From the same scene, two different image sequences 
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were created one where the camera moves horizontally and the other where the camera 

moves forward.  Figure 13 shows the recovered inverse depth when the camera is moving 

sideways, which is close to the true inverse depth.  For comparison, Figure 14 shows the 

recovered inverse depth when probability distributions are not used.  Figure 13 is 

significantly closer to the true inverse depth.  Figure 15 shows the recovered inverse 

depth when the camera is traveling forward.  These methods only recover the depth at the 

feature points on the image.  The other points on the image can only be found through 

interpolation, which is why the images have a tiled appearance.  The centers of the tiles 

are the location of the feature points. 

Figure 16 shows one frame of a video taken from a UAV approaching a tree.  The 

recovered inverse depth is shown in Figure 17, which shows that the tree has been 

accurately detected in front of the rest of the scene. 

          

Figure 11: One Frame from a computer-              Figure 12:  True inverse depth. 

generated video. 
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Figure 13: Recovered inverse depth using   Figure 14: Recovered inverse depth using 

the multiple frames with distributions            the multiple frames without distributions  

method.       method. 

 

 
 

     Figure 15: Recovered inverse depth with 

   the camera moving forward. 

 

       

Figure 16:  One frame from a video from a     Figure 17: Recovered Inverse Depth 

camera approaching a tree. 
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Chapter 5 

 

Conclusion 

 

5.1 Future Research 

 There are several areas where future research should be directed.  One possible 

improvement is to find a method that is as simple computationally as the Gaussian 

methods but can handle non-Gaussian noise.  Another improvement that could be made is 

to solve for the translation, rotation, and depth simultaneously.  However, this is a highly 

complex nonlinear estimation problem.  There also may be a slightly better way to 

estimate the translation in Section 3.2.3.   

 Structure from motion, even with the improvements developed in this thesis, can 

be difficult under certain circumstances.  This problem could be made easier and more 

reliable by using additional information.  An easy way more information could be 

included is to use more than one camera, that is to have two moving cameras rigidly 

attached to one another.  Notice that this would be different from stereo vision, which 

uses two stationary cameras, and different from structure from motion, which uses a 

single moving camera.  This idea is particularly appealing because a well-designed 

algorithm should accentuate the strengths of both stereo and structure from motion.  

Structure from motion has the advantage of being able to find corresponding points 
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easily, but has the disadvantage of not being able to find the depth easily from the 

corresponding points.  Stereo vision has the opposite problem.  Stereo vision has the 

advantage of easily telling the depth from corresponding points but is not able to find 

corresponding points as easily.  By combining the two approaches, it may be possible to 

use the strengths of both methods to produce a very reliable algorithm.  The idea of 

combining stereo vision and structure from motion has been considered in the past in 

several methods [30, 31, 32], but these methods could all be improved by applying the 

techniques described here to better understand and manage the noise. 

 

5.2 Major Contributions 

 This thesis makes several contributions to the field of structure from motion.  

First, it contributes the correlation-based method for computing optical flow probability 

distributions.  It contributes the first structure from motion algorithm that considers non-

Gaussian noise.   

The Gaussian structure from motion algorithms are based on the work Soatto and 

Brockett [23].  However, this thesis makes several modifications and improvements to 

their original method.  One contribution is to weight the data, so that the more valuable 

data is given greater value, which is accomplished by adding the weighting matrices Wi 

to Equation (34).  The derivations of the matrices Wi and Gi in Equations (23) through 

(34) are also new.  The solutions for the translation, rotation, and depth from [23] all had 

to be modified to incorporate the new weights Wi.   

The work of Soatto and Brockett was only a two-frame method.  Another 

important contribution of this thesis is to extend their method to use multiple frames.  The 
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use of multiple frames necessitates the addition of a better depth model that does not 

assume constant depth.  This depth model is unnecessary in the original two-frame 

method.  Another contribution is the addition of a smoothness constraint. 

 

5.3  Summary 

A structure from motion algorithm that provides a more rigorous treatment of the 

noise in the SFM problem has been presented.  By using optical flow probability 

distributions, a better understanding of the noise is obtained and the noise can be 

managed more effectively.  Two different methods for calculating optical flow 

probability distributions were presented, as well as methods to calculate structure from 

motion assuming non-Gaussian and Gaussian noise using two frames or multiple frames.  

The experimental results show that methods which use optical flow probability 

distributions better estimate the camera motion and the three-dimensional structure of the 

scene.  The experimental results also show that our method compares favorably with 

other SFM algorithms that also use probability distributions. 
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